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Starting from a certain simple tractable solution of a system of equa- 
tions of the Chaplygin type for the plane motion of a gas, a method is 
presented by which other systems of equations of a type containing arbi- 
trary constants in their coefficients can be obtained. BY selecting the 
constants it is possible to obtain good approximations to the equations 
of adiabatic gas flow over a wide range of velocity variation. Peres 
[ 1.2 1 has proposed a similar method. 

However. with the transformations employed in [ 1 1 and [ 2 I, important 
properties of the initial solutions are not preserved. In our work. after 
the application of each Legendre tr~sformation and the generalization of 
the functions which generate the coefficients of the system of equations, 
the inverse transformation with these generalized functions is applied. 
As a result, such important properties of the initial flow as cOntinUitY 
of the subsonic flow into the supersonic domain and uniformity of the 
flow at infinity are preserved. The method is applied to gas flows with 
transition through sonic velocity. The Tricomi equation is taken for the 
initial equation. A better approximation to real flows is obtained over 
the range of relative velocity variation 0.1 < h < 1.2. The calculation 
of a family of nozzles is given. 

1. PreSentatiom of the method. From the condition of total differ- 
entials of the expressions 

cos 4P1 (A) @I- sin f+Q1 (A) dql = dq 

sin 4h 0) dql + cos sQ1 (a) dJCl = dyl 

(1.i) 

where P,(A) and Q,(h) are certain given functions of the independent vari- 
able A, the following system of equations for the unknown functions 
$,@, xl and $l(@. h) can be derived: 

(1.2) 
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In canonical form the system (1.2) has the form: 

where 

Formulas (1.4) can be transformed into the form 

According to the behavior of functions Pi(h) and Q,(h) and their 

derivatives, system (1.3) and formulas (1.5) are taken together with 

either the upper or lower signs in front of \r;i;,. 

In particular, with 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

the system (1.3) is the Chaplygin system of equations for the plane motion 

of a gas. For this case the functions $1 = 4 and !1/i = !I/ will be the velo- 

city potential and the stream function, 
“1 = x and yi = y the Cartesian 

coordinates of the plane of flow, 8 the angle at which the velocity vector 
is inclined to the x-axis, h the magnitude of the relative velocity, and 

h2 = (K + l)/(~ - 1). With (1.6) 

‘11 d), 
O(i\) = s(h) = s x (1.71 

and the upper signs must be placed in front of \lXin formulas (1.3) and 

(1.5). ‘The canonical form of the Chaplygin equations is convenient for 

investigation and was first widely used in the work of Khristianovich 

l4.5.6 1. With a given function d Ai system (1.3) can be obtained with 

various functions P1 and Q,. In fact, with a given function d/ formulas 

(1.5) represent a system of equations with respect to P1 and Q,. Eliminat- 

ing one of the unknown functions, we obtain a linear differential equa- 

tion of second order with respect to the other unknown function. There- 

fore, in general form functions P, and Q, will depend on two arbitrary 

constants which do not enter into the expression for \/ K(o). 

We will now present a way of obtaining from the system of equations 

(1.3) analogous equations with new arbitrary constants contained in their 

coefficients. We pass from the functions &, $~i to the functions a, 9’ 

with the help of the Legendre transformations: 
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(1.8) 

We have 

Xl = aJU, --_ - Y,, ( yl = a& ==. Yr, Cf.91 

where 

U1 = “1’ (A) cos 8, ~1 = Pr’ (h) sin 9, ‘q = Qj-l (a) cos 8, tl = Qr’ (A) sin 4 (1 .IO) 

If in system (1.9) we pass from the variables ul, ul, rl, tI 

independent variables 8, x and then further reduce to canonical 

finally obtain 

to the 

form, we 

(1.11 

The functions PI(x), Q,(A) are a particular solution of the system of 

equations 

(1.12) 

where P2* and Q,* are the unknown fun&ions. The system (1.12) is trans- 

formed to the form 

(pz* =I’ f-l, q2* -_ Q;-l) (1.13) 

Hence 

d2p,+ d In x1 dp.* ~- 
da” + do 

x-p**=0 (1.14) 

Employing the Liouville formula to calculate the general solution of 

equation (1.14) and taking (1.13) into account, we obtain 

where Pi0 and Q 1,, are the values of PI and Q, with o = 0(x = I), and a1 

is a constant of integration. The functions e2* and q2* are calculated to 

within an arbitrary constant factor which does not affect the generality 
of the investigation. By an inverse transformation from the functions a, 

y to the functions +2, $2 according to the formulas 
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am am 
92 = u!2* au2* + z’P* auz* - (I), 

aY aY 
$2 = r2* a) + k?* aj -y (1.16) 

where 

4* = p2* (A) cos 9, vz* - p2* (A) sin a, r2* : Qr* (1) ('0s 8, t:* = qr* (A) sin8 (1 .17) 

we arrive at the system of equations 

where 

vE2 _ (Qz* P) Qz*’ P)‘,“n _ vK /’ 1 + UlJ, ) 
2 

I’,* (h) P,*’ (h) I \I + MIOQIO --adz 

(2.18) 

(1.19) 

The function G may contain two more arbitrary constants than dT. 

The second essential constant c1 is contained in functions Pi and Q, 
if they are computed with the general solution of system (1.5) for a given 

function d K1 (0). 

Increasing by one the indices in (1.1) and (1.51, we obtain formulas 

for computing the plane x2, y2 which corresponds to system (1.18), and 
we also obtain a system of equations for functions Pq and Q,. which are 

computed from their particular solutions Pg = P2*, Q, = 0,‘. To within 

an arbitrary constant factor we obtain 

where p26* and q2,,* are the values of p2* and q2* with u = 0, and c2 is 
a constant of integration. This method of acquiring constants can be 

continued farther, Increasing the indices in (1.19) by one, we obtain a 

formula for \/?Cj, etc. The function j/q will already contain four arbi- 

trary constants more than fl. Supposing the initial system (1.3) 

sufficiently simple for solution, by selecting 2(n - 1) arbitrary con- 
- 

stants we can try to make d Kn approximate the \/Kof adiabatic gas flow. 

The dependence between c$,,, $,, and q$, $1 will be apparent if we find them 

for n = 2. 

We will denote 

@ U** = - Y’&, :- x2*, O”,, - Y,,. = yz* (1.21) 

Taking into account formulas (1.161, (1.13), (1.101, (1.9) and (1.51, 
after simple calculations we obtain 
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(1.22) 

From formulas (1.81, (1.16), (1.21) and (1.22) it follows that 

‘pa == ‘pl + Qs* - +) (COS 92, -1 sin 4yl) 

4% = 91 + ( ps - &J (cos 9yl - sin 9x,) (I .2X) 

Increasing by one the indices in (1.231, we obtain formulas for func- 

tions 43, $3, etc. Functions P3*, 4’ are calculated according to form- 
ulas analogous to (1.15). On the basis of formulas (1.231 and (1.11 we 

conclude that function $2 preserves a series of important Properties of 

the initial flow.. For instance, if $1 has a singularity which represents 

an undisturbed translational flow at infinity, then $2 also contains this 

singularity. At the transition line the condition of continuity of the 

subsonic flow into the supersonic domain is also preserved [5,7 1. For 
p l L4- p 2 ‘I- 1’ Q,*= Q. 

4J 

system (1.18) coincides with system (1.31. On the 

basis of’ (1.23). 2 = $1 in this case. 

We note that coinciding systems of equations are also obtained in ana- 

logous circumstances by Peres, but that every concrete sOlUtiOn $l varies 

according to the formula $2 = I,!J~ + d2Clr,/de2 . Consequently, the trans- 

formations used in [1,2 I do not preserve such important properties of 

the initial flow as, for instance, continuity of the subsonic flow into 

the supersonic domain [ 7 I. 

2. Application of the method. Calculation of nozzles. We will apply 

the method to gas flows with transition through sonic velocity. In the 

initial system (1.3) we assume 

o 0) = s (a). V’K, = A;/. = _ + 
( > 

“’ A,,% (A< 0) (2.1) 

The variable W = (- 3/2 S12’3 takes positive values in the elliptic 

region and negative values in the hyperbolic region. With (2.1) we obtain 

for Pi and Q, the Airy equation 

d'h(rl) 
--yP1(I))=O dq” (2.2) 

We have 

PI= Cd(?) f cd (?A QI = T (+)I’ A (0’ (7) + 4’ (d) (2.3) 

where k(W) and i(q) are linearly independent solutions of equation (2.21, 
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represented by the following series which are convergent for all values 
ofrj: 

k(?J)=1.0899 (1+$s+(2.5)$) f. 

Tsbles of these functions have been computed by Fok [8 1. With (2.1) 
the system (1.3) is the principal part of the Chaplygin system of equa- 
tions in the neighborhood of x = 1, if 

il = A. = __3’,’ ‘X ; 1 
\ > 

3z 

and if the upper signs are t&ken in front of t/ Kl. 

Fig. 1. 

In Fig. 1 curve (1) depicts with K = 1.4 the function 

I_ Vx 3 ‘% V’T 
s=- ( : >z AU,,% I (2.5) 

whose deviation from unity is &n indication of the site of the transonic 
range of variation of ‘1 in which solutions of the system (1.3) -with (2.1) 
and A = A0 can represent real flows. Curve (2) shows the dependence of 

x on 7. But in many problems such as. for instance. the calculation of 
nozzles we have larger intervals of velocity variation. 

For a more precise approximation to flwe shall here confine ourselves 

to the function G When the condition 

is satisfied, the function 

equals unity at the point W 

‘4 = do (1 f-~ad’,oQ~oY (2.6) 

f* = - (-g)‘” s (2.7) 

= 0. With values of ci = 0. c2 = 1 and 
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(2/3)li3a1A = - 1.5 curve (3) of function f is close to the exact curve 

over a large interval of variation of n (Fiz. 1). From (2.6) we find that 
A = - 0.7773. We now note that with c1 = 0 the positive functions Pf and 
Q, vary oppositely from the functions of the real flow. Therefore, in the 
case under consideration, all the formulas in Section 1 are taken with 
the lower signs, Thus, the functions P2 and Q, satisfy a system of equa- 
tions of type (1.5) with a plus sign in front of dTx2’ whereas the func- 
tions P and Q of an adiabatic gas flow satisfy an analogous system of 
equations with a minus sign in front of a From the proximity of \lT 
to dTit follows that the functions P and Q of the system of equations * * 

dQ* 
-&- = -I/7@*, Q* =-YZd% 12.8) 

can always be chosen close to the functions P and Q. For this it is 
sufficient to require that P and Q be coincident with the exact values 
for some h within the inter& wheri d/3 is approximately equal to \/K. 
In accordance with the particular solutions P2 = P2*, Q, = - Q,* we cal- 
culate the general solution 

o* -= w(1 .bf-$d9 ) , Q* = --bQ2* (I f b2P2u’Pl~*-ba~~iP2*~ds) (2.9) 

With values of the constants &1= 1.589 and b2 =- 0.9702, functions P 

and Q* coincide with the exact values at the point x = 1. In Fig. 1 c&es 
(4) and (5) represent functions P/P and Q/Q . The system of equations of 
the form (1.18) with the upper sign; in frond of 02 corresponds to 
formulas (2.8). We have 4. = - & and $J = +2, where r,f~ and v’, are the 
velocity potential and stream function Gf the approximition t: adiabatic 
flow achieved. Taking into account that in formulas of type (1.1) with 
index 2 for the case P2 = PZ*, Q2 = Q2* we have x2 = x2* and y2 = yZ*, 

for the calculation of the plane of the gas flow we obtain the following 
formulas: 

We consider the flow velocity A. From the proximity of fl to d/Kit 
follows that the results are not essentially changed if the system of 
equations with respect to 4. and 6. is considered to be exact for a 
fictitious gas and if, in accordance with this interpretation, the magni- 
tude of the velocity is determined according to the formula P *-%. 

For calculating nozzles from initial data we will take the following 
solutions of system (1.3) with (2. I), found by Fal’kovich: 
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(2.11) 

a (a, 7) = - (3/?)“* {( 8 + v/S.2 + 4/9q3)1’Y + (9 - pr8wj”s } (2.12) 

(2.13) 

where F(a, b, c, Z) is the hypergeometric function and dl is an arbitrary 

constant [ 9.10 I. Solution (2.11) realizes a family of nozzles whose up- 

stream flow due to the function p (u, q) tends to the uniform subsonic 

velocity with corresponding magnitude 99. With q < 0 the argument of the 

function F is larger than unity. According to the formula for the analytic 

continuation of the hypergeometric series [ll I, it follows that for T]< 0 

(2.14) 

The function a (8, W) in the neighborhood of W = 0 is the principal 

part of the solution (2.11) which guarantees that the continuity condi- 

tion is satisfied [ 7 1. 

By %*1° Y.1’ %I we denote the magnitudes of x., y., $. which corres- 

pond to the initial solution (2.12). Let x.2, y,2, $e2 correspond to 

function (2.13). For greater diversity in the choice of nozzle forms we 

will add the solution 

+*a=4 (2.15) 

We have 

~3 = Q* PI) COST--QQ, (O), Y*S = Q* (ri)sina (2.16) 

Thus, the family of nozzles 

O* = +,I + &+,a + d&a, G = ~1 + Gv,a +dz%a, Y;= Y*l+ &Y*z + dzY*a (2.17) 

is calculated according to the above formulas and they depend on two 

arbitrary constants di and d2. We have computed these functions in the 

variables a. W. Solving (2.12) with respect to 8. we obtain 

8=-qa-f (2.18) 

All the necessary integrations are carried out initially for W along 

the axis of symmetry (6 = 0). and then along a line W = const. The Point 

e= 0. W = 0 corresponds to the origin of the coordinates xei = yei = 

O(i = 1, 2. 3). 



On the 

Functions l/lei, xmi, yei 

of subsonic values of q in 

unity, and can be obtained 

theory of plane gas flows 295 

( i = 1, 2, 3) have been tabulated for a series 

the interval of variation of a from zero to 

from the author. 

The coordinates of the nozzle wall I) = const are determined on each 

line 77 = const by integrating with respkt to a. Fig. 2 shows a nozzle 

with dl = d2 = 0 and I!/ 
*1 

= 0.388. 

Fig. 2. 

It is possible to use the given nozzle form to determine the outflow 

from a container of gas with transition through sonic velocity. The walls 

of the nozzle can be computed up to a smooth junction with the walls of 

the container. 

For nozzles with subsonic translational flow at infinity 

of the half-width on the basis of formulas (1.23) and (2.13) 

larger than 

the magnitude 

cannot be 

Fig. 3 shows a nozzle with dl = l/2, d, = 0 and ‘lo = 21. Because of 

the effect of the function I/I 3 the transonic section of the nozzle will 
* 0 

be 

of 

Fig. 3. 

less steep than that obtained with dl = dq = 0. By an appropriate choice 

d2 the effect of the second term dl$ 2 can be cancelled in the neighbor- * 
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hood of T] = 0. 

According to [7 ] satisfaction of the continuity condition guarantees 

the potential nature of the supersonic flow only up to the characteristic 

which is tangent to the axis of symmetry of the transition (Fig. 4). 

Fig. 4. 

Since the calculation of the supersonic part of the nozzle is more con- 

veniently carried out from the characteristic, and since nozzles with 

steep walls are of interest to us, we may expect that on the character- 

istic of the second family cd we are already sufficiently far from sonic 

velocity to use the well-known approximate solutions of the fundamental 

boundary value problems of supersonic gas flow [12. 13 1. The flow in the 

region ocd will be potential if the Jacobian 

for all points of this region. In the independent variables 8, rj Proof of 

the potential nature of the flow is reduced to verification of the in- 

equality 

(2.19) 

the validity of which can be demonstrated. 

The transonic part of the nozzle can be calculated approximately by 

the formulas 

dY* 

where f&, x0*, yO* are the values of the quantities on the line 9 = 0 and 

the derivatives are taken along a streamline. 

Along $ l = const we have 
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With the help of formulas (2.3), (2.12), etc. it is not difficult to 

compute all the necessary quantities. For instance, 

(2.22) P& = ta $,, (g) 1.5”” .__ 
q-0 q-0 Lz clls”9,(JI*,) .n11-30 

a+* ( > x- 1-n 
=(I---al P* (O)Q* 10)) [(gln__o -- 2”+-$o) (t:os 8yl -sin&cl) ,_“I 

(Z),_,L (I-4 PI COY& (0)) ($)q_o+u~ 63 (O)(sin9y, .tcOsaxl) n-o (2.23) 

(cm 8yl - sin&xl) 1)_,~ = - 3’!“Q, (0) 9,,“a -I- !dz - 
6.2’1’ 1’ (‘/a) ___ dl a,$- O(&,‘h) 
%I ‘1. r(“!,s)l’(~/,~) ) 

(2.24) 

(sir&/, .+ 1.09 ax,),_,- - 3% P, (0) 
2% 9 0 

2,. 3”1Q1 (6) 
___ 

_ 
4 8,“s fo(8,‘) 

(2.25) 

Along the characteristic oc we have 

8 = _+ (- ?$” (2.26) 

Solving the system of equations (2.26) and (2.20), we find the values 

ofe=eCandW=WCatpoint C. Along the characteristic cd we have 

a + $ (- n)‘/* - aC + + (-- 7je)BA (2 7' . . I 

We compute the coordinates x , y along cd by 
and (1.1). The values of x1, yI*whiEh correspond 

in the variables W, a are equal to 

formulas (2.101, (1.22) 
to the function (2.12) 

7. 
*I (a, rlj = n(0, ‘1) - -$‘I 

, 
API(q) i cos (qa + $:ada + Ql(q) % sin( qz + $)da 

0 

Yl(a,~)=(~~‘/‘~~~(~)~sinj’ia+~)ada+Ql(rl)~cos(rll+$)da (2.28) 
0 

The solution (2.12) is not unique in the region aodc. For the regions 

obc and ocd we have respectively 
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where 

zy=+?$“-&, 2v Z $ (- 3)“” -+- 4 (2.30) 

On v = 0 and g is 9 the arc tg is equal to II and 0. respectively, and 
on od it equals l/2 rt. 

In concluding this paper we note that we have applied the method we 
have presented to constructing nozzles with a straight transition line, 
For instance, if the exact solution of the problem of the outflow of gas 
from a Borda mouthpiece contained in 114 1 is constructed with our function 

d&*2 * then we obtain a nozzle with a straight transition line in the 
case of uniform translational flow at infinity upstream. 
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